
Online File Caching on Multiple Caches
in Latency-Sensitive Systems

Guopeng Li, Chi Zhang, Hongqiu Ni, and Haisheng Tan(B)

LINKE Lab and the CAS Key Lab of Wireless-Optical Communications,
University of Science and Technology of China (USTC), Hefei, China

{guopengli,gzhnciha,nhq0806}@mail.ustc.edu.cn, hstan@ustc.edu.cn

Abstract. Motivated by the presence of multiple caches and the non-
negligible fetching latency in practical scenarios, we study the online file
caching problem on multiple caches in latency-sensitive systems, e.g.,
edge computing. Our goal is to minimize the total latency for all file
requests, where a file request can be served by a hit locally, fetching from
the cloud data center, a delayed hit, relaying to other caches, or bypassing
to the cloud. We propose a file-weight-based algorithm, named OnMuLa,
to support delayed hits, relaying and bypassing. We conduct extensive
simulations on Google’ trace and a benchmark YCSB. The results show
that our algorithms significantly outperform the existing methods con-
sistently in various experimental settings. Compared with the state-of-
the-art scheme supporting multiple caches and bypassing, OnMuLa can
reduce the latency by 14.77% in Google’s trace and 49.69% in YCSB.

Keywords: Cache · Mobile edge computing · Delayed hits

1 Introduction

In computer architecture, cache is designed to address the gap between mem-
ory access latency and processor processing speed [9]. Today, the concept of
cache has been extended to different areas and has played an important role in
improving system performance. The structure located between different types of
hardware and used to eliminate the impact caused by the disparities of access
time can be called a cache, such as disk cache, CDNs cache, Web cache and DNS
cache. Taking advantage of temporal locality, storing some files that are about
to be accessed into cache is one way to improve performance by using cache [18].
In this context, in order to minimize the total cost, one of the first and most
important problems is to select which files to store in the cache and which files
to replace when the cache is full, i.e., the online file caching problem. In the tra-
ditional online file caching problem, we are given a cache with a specified size k
and a sequence of file requests, where each file has a specified size and a specified
retrieval cost. The goal of the traditional online file caching is usually to mini-
mize the cache misses or the total retrieval cost of file retrievals by maintaining

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. N. Dinh and M. Li (Eds.): CSoNet 2022, LNCS 13831, pp. 292–304, 2023.
https://doi.org/10.1007/978-3-031-26303-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26303-3_26&domain=pdf
https://doi.org/10.1007/978-3-031-26303-3_26

Online File Caching on Multiple Caches in Latency-Sensitive Systems 293

files in the cache [21]. However, in practical scenarios such as Mobile Edge Com-
puting(MEC) [16] and Content Delivery Networks (CDNs) [6], due to the long
physical distance, the latency for fetching a file from the cloud data center can
be up to 100 ms, with the increase in network bandwidth and system through-
put, 1M file requests can be arrived in a second, i.e., the average inter-time for
two consecutive file requests could be as low as 1µs [2]. During the period when
a missed file is retrieved from the cloud data center, the subsequent requests
for the same file can not be served immediately, which is not a hit, and is also
different from a miss, which is called a delay hit [23]. In MEC and CDNs, in
addition to local hit and fetching files from cloud to local, file requests can also
be served by bypassing and relaying : 1) In cloud-based scenarios, the request
can be sent to and served at the remote cloud, which is called a bypassing. 2)
Since there is more than one edge server or PoP (regarded as cache) in MEC and
CDNs, respectively, when the requested file is not already stored in the cache
that the request arrives, the request can be sent to a nearby cache that has the
same file, which is called a relaying. An example of online file caching in MEC
is demonstrated in Fig. 1.

Time

Requests

Results Hit Fetching Delayed hit Relaying Bypassing Bypassing Hit

Cloud Data Center 1

Edge 1

File
Request

Edge 2 Edge 4Edge 3

Cloud Data Center 2

X

Hit

bypassing

Internet
bypassing

File:

relayingfetching

Delayed Hit
Hit

Edge:

Fig. 1. An example in mobile edge computing system, where r1 is served at e1 locally,
r2 triggers the fetching and evict operation, r3 is delayed served at e2, r4 is relayed to
e4, r5 and r6 are bypassed to the cloud data center, and r7 is served at e2 locally.

Motivating Example. As shown in Fig. 1, there are four edge servers and
two cloud data centers connected through Internet, and eight different types
of files with different sizes are stored in the cloud data center. Before T1, each
edge server has stored some files. r := (e, f) represents the request arriving
on an edge server e for file f . In order to demonstrate the ways (hit, fetching,
delayed hits, relaying and bypassing) for serving requests on multiple caches

294 G. Li et al.

in latency-sensitive systems, we have designed eight requests as an example. 1)
hit : If file f is already stored on e, the request can be served locally with no
latency (as r1 and r7 illustrated in the figure). 2) fetching : If file f has not been
stored in e, edge server can fetch file from the cloud, due to the non-negligible
fetching latency, file will not be stored in the edge server as soon as the fetching
operation is triggered (as r2 illustrated, and we assume the fetching operation
will be finished at T6). 3) delayed hits: During the file fetching period, the
subsequent requests can not be served until the fetching operation is finished
and suffer delayed serve latency (as r3 illustrated). 4) relaying : If file f has
not been stored on server e, but a nearby server e′ has f , we can relay and
serve the request r on e′ with relaying latency (as r4 illustrated). 5) bypassing :
When file f does not exist in the entire multiple caches system, in addition to
fetching f from the cloud data center to the cache, we can bypass the request
to and serve it at the cloud data center with bypassing latency (as r5 and r6
illustrated). Moreover, since the capacity of the edge server is limited, where
some existing files might be replaced if the edge server is full. For r2, when the
fetching operation is triggered, we should check if there is enough empty space
to store f3. The capacity of cache e2 does not allow it to store both f3 and f5
because both of them are large files, and we choose to evict f5 from e2.

Several algorithms have been proposed for the online file caching problem
in the past, such as recency-based LRU [15], frequency-based LFU [4], recency
and frequency based ARC [11], learning-based LeCaR [17], Camul [16] that uses
marking methods in multiple caches system and CaLa [23] which handle weights
and supports bypassing, but none of them studied the model as above. CaLa
was designed for the one cache system, Camul focuses on fixed relaying and
fetching cost without considering the non-uniform size of various files and the
non-negligible fetching latency. In this work, we study the online file caching
problem on multiple caches in latency-sensitive systems.

Our Contribution. In this work, we study the online file caching problem
with relaying and bypassing on multiple caches in latency-sensitive systems, and
propose an online algorithm to minimize the total relaying, fetching, delayed hits
and bypassing latency. Our contributions are summarized as follows.

• We investigate a practical online file caching problem with relaying and
bypassing on multiple caches in latency-sensitive system to minimize the total
latency of all file requests (Sect. 3).

• We propose an online algorithm, called OnMuLa, to support delayed hits, relay-
ing and bypassing. To the best of knowledge, OnMuLa is the first online algo-
rithm for the online general file caching problem with delayed hits on multiple
caches system (Sect. 4).

• We conduct extensive simulations on Google’s trace and YCSB. Compared
with Camul, the state-of-the-art algorithm that deals with multiple caches
and bypassing, in default settings, OnMuLa can reduce the latency by 14.77%
in Google’s trace and 49.69% in YCSB (Sect. 5).

Online File Caching on Multiple Caches in Latency-Sensitive Systems 295

2 Related Work

Online file caching problem is often mentioned in computer and network systems.
It can be described as follows, after being given a cache of k slots that each
store one file, if the file has been cached in a slot when a request for a file
arrives online, the request is served with no cost. If the file has not been cached,
it has to be fetched into the cache with fetching cost. The online file caching
algorithms maintain the contents of k slots to minimize the total fetching cost
for all requests. LRU [15] is a classic algorithm widely used in practical scenarios.
Considering the non-uniform fetching cost, Young et al. [21] proposed Landlord.
In order to support bypassing, Landlord is extended to Landlord with Bypassing
(LLB) [7]. Investigating general online caching problem on multiple caches with
relaying and bypassing, Camul [16] has a high hit ratio with lower total cost
than previous works.

Table 1. Related work of online caching problems

Algorithms File size &
Fetching cost

Delayed hits Bypassing Multiple
caches

LRU [15] Uniform ✘ ✘ ✘

Landlord [21] Non-uniform ✘ ✘ ✘

LLB [7] Non-uniform ✘ ✔ ✘

MAD [2] Uniform ✔ ✘ ✘

CaLa [23] Non-Uniform ✔ ✔ ✘

Camul [16] Uniform ✘ ✔ ✔

OnMuLa [this work] Non-Uniform ✔ ✔ ✔

In latency-sensitive systems, few works have paid attention to delayed hits
so far. A representative work is the online paging problem studied in [2], Atre et
al. creatively reveal the importance of delayed hits, and propose MAD, an online
algorithm that combines file aggregation delays into existing caching algorithms
(such as LRU and ARC). Zhang et al. [23] proposed CaLa, a general framework
that imitates an existing file caching algorithm to get guaranteed performance in
their work. Besides, caching problem has attracted a wide range of works from
emerging application areas, such as mobile system [10,13], CDNs [3,20], con-
tainer caching [8,12], and deep learning system [1,22]. For example, Beckmann
et al. [3] proposed LHD to predict the hit density of each object to filter objects
that have a small contribution to the cache hit rate. Yan et al. [20] proposed a
timer-based mechanism that can optimize the mean caching latency. This work
addresses the non-uniform file size and fetching latency, delayed hits, relaying
and bypassing on multiple caches. We summarize some related results in Table 1.

296 G. Li et al.

3 Problem Formulation

Motivated by latency-sensitive scenarios such as MEC and CDNs, we consider
the online general file caching model with multiple caches and cloud data centers.
Let F = {f1, f2, . . . , fN} be the set of all kinds of files, and we assume all files
are available in the cloud data center. Each file fi has size sfi

and fetching
latency tfi

. Without loss of generality, we assume all file sizes are integers. E =
{e1, e2, . . . , eM} represents the set of the caches in the system, the size of each
cache ei is Ki. Naturally, the sum of sizes of files stored in each cache can not
exceed the size of cache, i.e.,

∑
f in cache ei

sf ≤ Ki. Let R = (r1, r2, . . .) be the
sequence of file requests, a request r is a pair (e, f) ∈ E × F , meaning a file f
on cache e is requested. All requests arrive in an online manner, i.e., we can not
get future information and no assumption is made on the arrival patterns. Time
is divided into slots of unit size. Multiple different kinds of file requests might
come within one time slot, while each file f ∈ F can be requested at most once
in each slot. In the multiple caches system, when a request r := (e, f) arrives at
time T , the following 5 types of operations may be performed. The objective of
this problem is to minimize the total relaying, bypassing, fetching and delayed
hits latency to serve all requests.

• Hit : If the requested file f is already cached in cache e, then this request is
served locally with no latency, i.e., called a hit.

• Relaying : If e does not have f stored but another cache e′ does, the request
may be relayed and processed at e′ with relaying latency tr.

• Bypassing : A request may be bypassed to the cloud with bypassing latency
tb. Note that in this case, the file is not necessarily fetched into the cache.

• Fetching : When file f does not exist in the entire system, f may be fetched to
the cache with fetching latency tf , i.e., request r can not be served until time
T + tf . Once f is cached, we need to decide which files should be replaced if
the cache is already full.

• Delayed Hits: During the fetching period, i.e., from T to T + tf , before file f
is actually stored in the cache, all requests that require file f on cache e at
time slot t′ ∈ {T +1, T +2, . . . , T + tf − 1} can only be served at time T + tf
and suffered a latency of tf − (t′ − T), which are delayed hits.

4 Algorithm Design

In this section, we first propose a method to measure the importance of each
file, called file weight (Sect. 4.1). Then, we present our algorithm OnMuLa and its
version without bypassing OnMuLa− in Algorithm 2.

4.1 File Weight

The central challenge of this problem is how to deal with delayed hits in mul-
tiple caches system. The method in [23] does not capture the relaying opera-
tion in the multiple caches scenario, in order to avoid the impact of the lack

Online File Caching on Multiple Caches in Latency-Sensitive Systems 297

Algorithm 1: Update Weight
1 Input Parameter γ, cache e, file f , latency l
2 if fe.state = OUT then
3 fe.cumulativeDelay ← fe.cumulativeDelay + tf ;
4 fe.numFetching ← fe.numFetching + 1;

5 if fe.state = FETCHING then
6 fe.cumulativeDelay ← fe.cumulativeDelay + l;

7 fe.aggregateDelay ← fe.cumulativeDelay

fe.numFetching
;

8 fe.weight = (1 − γ) ∗ f.aggregateDelay + γ ∗ t2f ;

of consideration for relaying, as Eqn. 1 shown (assume start fetching f into e
at time T) and AggDelay(e, f) = CumuDelay(e, f)/ # of fetching f into e,
we refine the method to calculate CumuDelay to estimate the actual latency
in the multiple caches system. Not only delayed hits and fetching of request
on cache e contribute to CumuDelay(e, f), but the relaying from other caches
also affect CumuDelay(e, f). In order to get a trade-off between CumuDelay
and the upper bound of the total latency caused by the file’s miss, t2f , we use
Wfe

= (1 − γ)AggDelay(e, f) + γt2f to represent the weight of each file on each
cache, where parameter γ is used to adjust between these two methods.

CumuDelay(e, f) = tf +
∑

1≤τ≤tf −1

(tf − τ)[f is requested at T + τ]

+
∑

(max(tf − σ, 0) + tr)[relay from e′to e at T + σ].
(1)

4.2 Design of OnMuLa

The main algorithm is defined in Algorithm 2, and the weight update algorithm
is defined in Algorithm 1. Initially, the caches in the system are initialized to
empty. We use IN, FETCHING and OUT to represent the state of file f on cache
e, where fe.state = IN means f is already cached in e and fe.state = FETCHING
means f is already in a fetching period. When a new request r := (e, f) that
requests for file f on cache e arrives at T , OnMuLa decides how to serve r based on
fe.state. 1) hit : If fe.state = IN, then serve f on cache e with no latency (Line 13
to Line 14). 2) delayed hits: If fe.state = FETCHING, r will be served until
the fetching operation of f is finished and sufferd the latency t − T (Line 15 to
Line 17). 3) relaying : If there is a cache e′ �= e has f in the multiple caches
system, and the sum of waiting latency tw and tr is less than tf , then relay r
to e′ with latency tw + tr. tw represents the latency that r suffered on e′ after
be relayed to e′ (Line 19 to Line 21). 4) fetching and 5) bypassing : We use
Landlord [21] and Landlord with Bypassing(LLB) [7] as the replacement policy
in OnMuLa−and OnMuLa, respectively. It can be substituted with other algorithms
which can handle weight and support bypassing. Landlord and LLB maintain a
credit for each file to determine whether it should be evicted.

298 G. Li et al.

Specifically, in the implementation of OnMuLa−and OnMuLa, let fe.weight be
the credit in Landlord and LLB. When a request r := (e, f) has not been served
after the above process (Line 13 to Line 21), OnMuLa− checks the remaining size
of e and uses Landlord to replace the files in e if e does not have enough to cache
f , then fetch f to e. OnMuLa will first suppose f in eα, the copy of cache e, and
set the credit of f (Line 25). If feα .weight > 0 in the end of the replacement,
then fetch f to e, otherwise, bypass the request.

For Line 15 to Line 17 in Algorithm 2, we prove Theorem 1, i.e., if there is
more than one copy of file f in the multiple caches system, the request should
be delayed served on e instead of being relayed.

Theorem 1. If there is more than one copy of file f (the state of f is IN
or FETCHING) in multiple cache systems, when fe.state = FETCHING and
fe′ .state = FETCHING or IN, request r := (e, f) should be delayed served on e
instead of being relayed to e′.

Fetch to Fetch to
in in

Fig. 2. An example of Theorem 1, after t1, the request for f on e2 should be served on
e2 instead of be relayed to e1.

Proof. First, we prove Theorem 1 for OnMuLa−. In the multiple caches system,
as shown in Fig. 2, suppose there is no request for f before t0. At t0, r1 requests
f on e1, however, fe1 .state = OUT, then start to fetch f into e1, the fetching
process will be finished at t0 + tf . At t1, r2 requests f on e2, fe2 .state = OUT,
fe1 .state = FETCHING, however, the condition in Line 19 of Algorithm 2 is
not satisfied, tr + t0 + tf − t1 > tr, i.e., t1 − t0 < tr, start to fetch f into
e2, the process will be finished at t1 + tf . Now, there is more than one copy
of file f in the multiple caches system. Next, we use the converse method to
prove Theorem 1. During the time period t1 to t1 + tf , requests r4, r5 and r6
request f on cache e2. For r4, we will relay the request to cache e1 if and only
if t0 + tf − t3 + tr < t1 + tf − t3, i.e., t1 − t0 > tf , however, this contradicts
t1 − t0 < tr. As a more direct example, for r5, the condition is tr < t1 − t0. For
r6, tr < t1 + tf − t4 should be satisfied, as Fig. 2 shown, it is impossible. For
OnMuLa, since bypass is allowed, OnMuLa can fetch files into the multiple caches
system or bypass the requests when the condition in Line 19 is not satisfied. If
all requests are bypassed, file will not be cached in the system, the assumption of
the theorem is not satisfied. If there is more than one copy of the file are cached
in the system, as same as the above proof for OnMuLa−. ��

Online File Caching on Multiple Caches in Latency-Sensitive Systems 299

Algorithm 2: Main Algorithm
1 Input Request r := (e, f), the size of f sf , Fetching Latency tf , Bypass Latency

tb, Relay Latency tr, bool B represents allow bypass or not ;
2 C ← ∅, C represents the set of files cached in e;
3 Fetching files Ff ← ∅, (e, f, t) ∈ Ff means file f will arrive on e at time t;
4 Timer T ← 0;
5 while True do
6 for (e, f, t) ∈ Ffetching do
7 if t <= T then
8 if fe.state = FETCHING then
9 fe.state ← IN;

10 C ← C ∪ {f};

11 Serve all the buffered and relayed requests for f on e;

12 while new request r := (e, f) for file f on e arrive at T do
13 if fe.state = IN then // hit

14 serve f on e with no latency;

15 if fe.state = FETCHING then // delayed hit

16 delayed serve f on e at time t with latency t − T ;
17 UpdateWeight(e, f, t − T)

18 if fe.state = OUT then
19 if there is a cache e′ has f and tr + tw ¡ tf then // relay

20 relay r := (e, f) to e′ with latency tr + tw;
21 UpdateWeight(e′, f, tr + tw);

22 else
23 Let cache eα be a copy of e ;
24 if B = Ture then
25 Let f in eα, UpdateWeight(eα, f, 0);

26 if remain size of eα < sf then
27 Fevicts ← Replace(eα, f);
28 for f ′ ∈Fevicts do
29 Evict f ′ from e, C \ {f ′};
30 fe′ .state ← OUT;

31 if feα .weight > 0 or B = False then
32 fe.state ← FETCHING;
33 Ffetching ← Ffetching ∪ {(e, f, T + tf)};
34 UpdateWeight(e, f, tf);

35 else // bypass

36 Bypass this request with latency tb ;

37 T ← T + 1;

300 G. Li et al.

5 Evaluation

In this section, we evaluate the performance of OnMuLa and OnMuLa−on two
datasets: (1) the production trace from Google [14], (2) the Yahoo! Cloud Serving
Benchmark (YCSB) [5]. We compare OnMuLa and OnMuLa− with several caching
algorithms i.e., LRU [15], LRU-MAD [2], Landlord with Bypassing [7], Land-
lord [21], Camul [16], CaLa with Bypassing and CaLa [23]. The details of the
results are shown in Sect. 5.2 and we highlight our key findings as follows.

• Compared with Camul, the state-of-the-art caching algorithm in multiple
caches system. With default settings, in Google’s trace, OnMuLa− can reduce
latency by 12.62%, this reduction will be increased to 14.77% if bypassing is
allowed. In YCSB, OnMuLa reduces latency by 49.69% compared to Camul.

• The performance of the algorithm can vary significantly for different traces.
For the one cache case, OnMuLa− and CaLa get poor performance in Google’s
trace, and conversely, work well in YCSB.

• If the cache size is small (e.g., sum of 0.001% to 0.01% of the popular files),
OnMuLa outperforms other algorithms by bypassing.

5.1 The Experiment Settings

By default, we set 400 caches for Google’s trace and 200 caches for YCSB. The
default cache size is the sum of the sizes of top 0.01% popular files. We let relay
latency tr = 0.002 × fetching latency tf [16], bypassing latency tb = tf [23]. We
set the average inter-request time to 10−4s [19], and the average default fetching
latency of files is set to 0.1s [2]. For OnMuLa, OnMuLa−, CaLa and CaLa with
Bypassing, the default value of γ is set to 0.1. The metrics used to evaluate the
performance of algorithms is the total latency incurred of all requests. And we
use the latency improvement relative to LRU to measure the performance of
the algorithm when the parameters change, i.e., Latency Improvement of A =
(Latency(LRU) − Latency(A))/Latency(LRU), a higher latency improvement
means better performance.

Fig. 3. Overall performance.

Online File Caching on Multiple Caches in Latency-Sensitive Systems 301

5.2 Experimental Results

Overall Performance. We first evaluate the overall performance of
OnMuLa and OnMuLa−, and compare them with the baselines, where parame-
ters are set as default values. The experimental results are shown in Fig. 3. In
Google’s trace, the latency improvement of OnMuLa− to CaLa is 45.16%, and
OnMuLa to Camul is 14.77%. For the results in YCSB, the latency improvement
of OnMuLa−to CaLa is 66.72%, and OnMuLa to Camul is 49.69%.

Sensitivity Analysis. In this part, we perform sensitivity analysis of the
parameters in the experiment settings, including the number of caches, fetch-
ing latency, cache size and γ.

Impact of Number of Caches. Figure 4(a) and Fig. 4(b) illustrate the impact of
the number of caches, which varies from 1 to 1000 for Google’s trace and from 1 to
400 for YCSB. In Google’s trace, OnMuLa− performs poorly in the one cache sys-
tem, with the number of caches increasing, the performance of OnMuLa− becomes
better. Due to the design for delayed hits and non-uniform file size, the perfor-
mance of OnMuLa is better than Camul. In YCSB, for the one cache case, due
to the design for non-uniform file size and delayed hits, OnMuLa− and CaLa
avoid bringing large and infrequent files into cache. For the multiple caches case,
with the increasing number of caches, the performance of OnMuLa−, OnMuLa and
Camul increase marginally. When the number of caches is large enough, 400
for Google’s trace and 200 for YCSB, OnMuLa and OnMuLa− achieve the best
performance among the nine algorithms.

1 200 400 600 800 1000
of Caches - Google

−300

−200

−100

0

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(a) (b)

10−3 10−2 10−1 100 101

Cache Size (%) - Google

−40

−20

0

20

40

60

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(c)

1 100 200 300 400
of Caches - YCSB

0

20

40

60

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(d) (e)

10−3 10−2 10−1 100 101

Cache Size (%) - YCSB

0

20

40

60

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(f)

Fig. 4. Impact of number of caches, fetching latency and cache size.

302 G. Li et al.

Impact of Fetching Latency. We show the result of the impact of fetching latency
in Fig. 4(b) and Fig. 4(e). The fluctuation of the curves reflects the different
sensitivity of various algorithms to the fetching latency in different traces. In
Google’s trace, the performance of OnMuLa and OnMuLa− gradually outperforms
Camul when the fetching latency increases, since their awareness of delayed hits.
In YCSB, the performance of other algorithms besides OnMuLa and OnMuLa− is
more likely the case without delayed hits. The reason is that the request locality
of YCSB is too low, and there are few requests with delayed hits, especially when
the requests are distributed to multiple caches.

Impact of Cache Size. Figure 4(c) and Fig. 4(f) show the impact of cache size for
Google’s trace and YCSB, respectively. In Google’s trace, when the cache size is
small, the performance of OnMuLa and Camul are far beyond other algorithms.
This is because bypassing can avoid evicting some frequently requested files from
the cache. As the cache size gradually increases, the performance of OnMuLa−,
CaLa gradually catches up with OnMuLa. Due to the discreteness of files’ size in
the trace and the non-consecutiveness between different caches, the performance
improvement brought by the additional cache size does not occur simultaneously
as the cache size increases, which causes the fluctuations in performance curves.

Impact of γ. For Google’s trace, as shown in Fig. 5(a), the best performance is
achieved when γ = 0.15, which shows that it is better to use a value of γ closer
to the aggregate delay for burst requests. For YCSB, as shown in Fig. 5(b), the
performance of OnMuLa−and OnMuLa remains stable as γ changes from 0 to 0.2.

(a) (b)

Fig. 5. Impact of γ.

6 Conclusion

In this paper, we study the online file caching problem on multiple caches with
relaying and bypassing in latency-sensitive systems. The objective is to minimize
the total latency to serve all requests. We first propose file weight to capture
the potential impact of the fetching and relaying process. Then we propose an
online algorithm OnMuLa to support delayed hits, relaying and bypassing, and

Online File Caching on Multiple Caches in Latency-Sensitive Systems 303

its version without bypassing, OnMuLa−. We evaluate OnMuLa and OnMuLa− on
Google’s trace and YCSB. The experiment results show that compare with
Camul, OnMuLa can reduce the latency by 14.77% in Google’s trace and 49.69%
in YCSB.

Acknowledgements. The work is partially supported by NSFC under Grant
62132009, and the Fundamental Research Funds for the Central Universities at China.

References

1. Abdi, M., et al.: A community cache with complete information. In: USENIX FAST
2021, pp. 323–340 (2021)

2. Atre, N., Sherry, J., Wang, W., Berger, D.S.: Caching with delayed hits. In: ACM
SIGCOMM (2020)

3. Beckmann, N., Chen, H., Cidon, A.: LHD: Improving cache hit rate by maximizing
hit density. In: USENIX NSDI (2018)

4. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: evidence and implications. In: IEEE INFOCOM’99

5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: ACM SoCC (2010)

6. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally
distributed content delivery. IEEE Internet Comput. 6(5), 50–58 (2002)

7. Epstein, L., Imreh, C., Levin, A., Nagy-György, J.: Online file caching with
rejection penalties. Algorithmica 71(2), 279–306 (2015). https://doi.org/10.1007/
s00453-013-9793-0

8. Fuerst, A., Sharma, P.: Faascache: keeping serverless computing alive with greedy-
dual caching. In: ACM ASPLOS 2021, pp. 386–400 (2021)

9. Karlsson, M.: Cache memory design trade-offs for current and emerging workloads.
Ph.D. thesis, Citeseer (2003)

10. Liang, Y., et al.: Cachesifter: sifting cache files for boosted mobile performance
and lifetime. In: USENIX FAST 2022, pp. 445–459 (2022)

11. Megiddo, N., Modha, D.S.: Arc: A self-tuning, low overhead replacement cache.
In: FAST 2003 (2003)

12. Pan, L., Wang, L., Chen, S., Liu, F.: Retention-aware container caching for server-
less edge computing. In: IEEE INFOCOM 2022 (2022)

13. Ramanujam, M., Madhyastha, H.V., Netravali, R.: Marauder: synergized caching
and prefetching for low-risk mobile app acceleration. In: MobiSys (2021)

14. Reiss, C., Wilkes, J., Hellerstein, J.: Google cluster-usage trace. In: Technical
Report (2011)

15. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

16. Tan, H., Jiang, S.H.C., Han, Z., Liu, L., Han, K., Zhao, Q.: Camul: online caching
on multiple caches with relaying and bypassing. In: IEEE INFOCOM (2019)

17. Vietri, G., et al.: Driving cache replacement with ML-based LeCaR. In: HotStorage
2018 (2018)

18. Wang, J., Hu, Y.: Wolf-a novel reordering write buffer to boost the performance
of log-structured file system. In: FAST 2002 (2002)

19. Wendell, P., Freedman, M.J.: Going viral: flash crowds in an open CDN. In:
ACM/USENIX IMC (2011)

https://doi.org/10.1007/s00453-013-9793-0
https://doi.org/10.1007/s00453-013-9793-0

304 G. Li et al.

20. Yan, G., Li, J.: Towards latency awareness for content delivery network caching.
In: USENIX ATC 2022, pp. 789–804 (2022)

21. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383 (2002). https://
doi.org/10.1007/s00453-001-0124-5

22. Yuan, M., Zhang, L., He, F., Tong, X., Li, X.Y.: Infi: end-to-end learnable input
filter for resource-efficient mobile-centric inference. In: MobiCom (2022)

23. Zhang, C., Tan, H., Li, G., Han, Z., Jiang, S.H.C., Li, X.Y.: Online file caching in
latency-sensitive systems with delayed hits and bypassing. In: IEEE INFOCOM
2022, pp. 1059–1068. IEEE (2022)

https://doi.org/10.1007/s00453-001-0124-5
https://doi.org/10.1007/s00453-001-0124-5

